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Abstract

In this work, an analysis of the heat transfer to pneumatically conveyed oil shale ®nes particles is developed. A
radiative±convective model, including radial dependence on the ¯uid temperature, is analytically solved by the use

of the Laplace transform and modi®ed Duhamel theorem [10]. It is demonstrated that the limiting case of in®nity
dilution of the particles results in the classical Graetz solution [15]. Results are analyzed and compared with
experimental data and another existent lumped capacity solution [6]. 7 2000 Elsevier Science Ltd. All rights

reserved.

Keywords: Heat transfer on pneumatic transport; Gas±particle heat transfer; Heat exchange in moving beds; Radiative heat transfer

in particulate ¯ows; Heat transfer to gas±solid mixtures; Radiant and convective heat transfer in gaseous suspensions

1. Introduction

Physical and chemical processes, involving heat
transfer to a ¯owing mixture of ¯uid and particles,

have been industrially employed for a long time now.
Catalyst regeneration, nuclear reactor cooling and oil
shale pyrolisis are examples of these processes. Due to

its technological importance, the phenomena have
received wide treatment in the literature. Farbar and
Morley [1] ®rst demonstrated the possibility of increas-

ing heat transfer rates by adding solid particles to a
gaseous stream. Tien [2] obtained an analytical sol-
ution for the case of a turbulent mixture; however, his
solution is restricted to a small Biot number

�Bi � hpdp=kp), solid/gas mass ratio less than 1 and
absence of radiation. Matsumoto et al. [3] by means of
the Laplace and Hankel transforms solved a model for

small Biot numbers with no radiant heat transfer.

Azad and Modest [4] developed a numerical analysis

of the problem, considering radiation scattering. Their

study is also limited to diluted suspensions and a small

Biot number. An approximate solution considering

radiant heat transfer and no restrictions in the particle

Biot number was obtained by LisboÃ a [5]. Bertoli [6],

employing the Cauchy residue theorem, obtained the

exact analytical solution of the LisboÃ a model.

In this work, a two-phase, convective±radiative

model (referred to in the text as distributed parameter

model Ð DM), considering intraparticle temperature

gradients and radial ¯uid temperature gradients, is

analytically solved. The solution developed follows a

di�erent approach to that by Munro and Amudson

[7], who employed the Laguerre theorem [8] to identify

the character of the poles in the Laplace transform

equations or that of Siegmund et al. [9], who used the

®nite Bessel transformation. The solution obtained will

be employed to describe the oil shale ®nes pyrolysis

International Journal of Heat and Mass Transfer 43 (2000) 2345±2363

0017-9310/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00280-X

www.elsevier.com/locate/ijhmt

E-mail address: savio@furb.rct-sc.br (S.L. Bertoli).



process. The in¯uence of design parameters, such as

wall temperature, mass ¯ux ratio, and Reynolds num-
ber on the mean temperature of the ¯uid and the par-
ticles, and also on the Nusselt number and convective,
as well as radiant heat ¯uxes, are determined. The

results are compared with experimental data from the
literature [5] and with another lumped capacity sol-
ution [6] that considers the uniform ¯uid temperature

throughout the pipe cross-section.

2. Analysis

The main restrictions of this study are the following:

. the heat absorbed by the chemical reaction (the py-
rolysis of oil shale is an endothermic reaction) is
negligible in comparison with the overall demand of

the process;
. the pipe wall is isothermal �Tw = const.) and black;
. the particles are gray; the gas is transparent to radi-

ation; the con®guration factor from the particle to
the wall is 1;

. the ¯ow is developed in the two-phase system and

the velocity pro®les for the ¯uid and the particles
are uniform throughout the pipe cross-section. The
particles and ¯uid may have di�erent velocities;

. the particles are spheres of uniform size and are uni-

formly distributed over the pipe cross section;
. the physical properties are uniform and constant;
. the eddy thermal di�usivity of the ¯uid is negligible;
. the amount of heat exchanged by convection

between the ¯uid and the particles is independent of
the radial position in the tube;

. the radiative heat transfer in the axial direction is

neglected when compared with the radial radiative
heat transfer.

3. Governing equations

Considering the above restrictions and de®ning t as
the particle residence time

t � x

up

�1�

an energy balance in the spherical coordinate system
yields the particle temperature equation:

1

ap

@Tp�x, t�
@ t

� @ 2Tp�x, t�
@x2

� 2

x
@Tp�x, t�
@x

�2�

Nomenclature

Aw wall di�erential area, � 2pR dx
Ap surface area of single particle, � pd 2

p

dp particle diameter

C speci®c heat at constant pressure
Dr pipe diameter
G mass ¯ux

hp ¯uid to particle heat transfer coe�cient
hw wall heat transfer coe�cient
k thermal conductivity

L length of the heating section
nv number of solid particles in the volume V
Pr Prandtl number, � Cfmf

kf

Nup Nusselt number, � hpdp

kf

Q ¯ow rate
r radial position in the tube
R pipe radius

Re Reynolds number, � Drrfuf=mf

Rep particle Reynolds number, � rfdp�usf ÿ utp�=mf

Rp particle radius

s Laplace variable
T temperature
Tfi ¯uid inlet temperature

Tpi particle inlet temperature

Tps particle surface temperature
Tw wall temperature
u axial velocity

usf super®cial gas velocity
utp terminal particle velocity
V pipe di�erential volume � pR2 dx

Ws solid feed rate
x axial distance

Greek symbols
a thermal di�usivity
D � j� g
e void fraction

ep surface emissivity of particles
g � nvhpAp

VrfCf

m dynamic viscosity

x radial position inside a particle
r density
s Stefan±Boltzmann constant

j � hwAw=VrfCf

Subscripts

f ¯uid
p particle
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Similarly, an energy balance in the cylindrical coordi-
nate system yields the ¯uid temperature equation :

rfcfuf

up

@Tf

@ t
� nvhpAp

V

ÿ
Tps ÿ �Tf

�� 1

r

@

@ r

�
rkf
@Tf

@ r

�

Tf � Tf�r, t�

Tps � Tps�t� �3�
�Tf �t� is the mean radial ¯uid temperature in time t,
given by:

�Tf �t� � 2

R2

�R
0

Tf�r, t�r dr �4�

The system formed by Eqs. (2)±(4) is subjected to the
following initial and boundary conditions:

r � R: Tf � Tw �5�

r � 0: Tf � finite �6�

t � 0: Tf � Tfi �7�

x � Rp, t > 0: Tp � Tps�t� �8�

x � 0, t > 0: Tp � finite �9�

t � 0, 0 < x < Rp: Tp � Tpi �10�

and also the additional condition:

x � Rp, t > 0:

ÿkp

@Tp

@x
� hp

ÿ
Tps�t� ÿ �Tf

�� hr

ÿ
Tps�t� ÿ Tw

� �11�

In the above equation, nv=V is the number of particles
per unit volume:

nv

V
� 6Ws

rpp2d 3
pupR2

�12�

and hr is the radiant heat transfer coe�cient between
the wall and the particle, given by:

hr � eps
�
T 2

w � T 2
ps

�ÿ
Tw � Tps

� �13�

4. Solution of the model in the Laplace domain

To solve Eqs. (1)±(11), we initially de®ne:

w � uf

up

�14�

and make the following variable change:

yp�x, t� � Tp�x, t� ÿ Tpi

Tpi

: �15�

Then, rewriting the equations for the particle and

¯uid, we have:

1

ap

@yp

@ t
� 2

x
@yp

@x
� @

2yp

@x2
�16�

w
@Tf

@ t
� g

ÿ
Tps ÿ �Tf

�� a

�
1

r

@Tf

@ r
� @

2Tf

@r2

�
�17�

The boundary and additional conditions are also:

x � Rp, t > 0: yp � Tps�t� ÿ Tpi

Tpi

� f�t� �18�

x � 0, t > 0: yp � finite �19�

t � 0, 0 < x < Rp: yp � 0 �20�

x � Rp, t > 0:

@yp

@x
� ÿhp

kp

"
f�t� � Tpi ÿ �Tf�t�

Tpi

#

ÿ hr

kp

�
f�t� � Tpi ÿ Tw

Tpi

� �21�

The solution of this coupled system of equations is
obtained in the Laplace domain. The subsequent devel-

opment, results in the transformed equations.
According to the work of Hackenberg [10], the

problem described by Eq. (16) and conditions (18)±

(20) has the following solution:

yp�x, t� �
�t
0

u�x, tÿ t�@f�t�
@t

dt� f�0�u�x, r�, �22�

where u�x, t� is the solution of the auxiliary problem:

@ 2u�x, t�
@x2

� 2

x
@u�x, t�
@x

� 1

ap

@u�x, t�
@ t

�23�

B:C:1: x � 0, t > 0: u � finite �24�

B:C:2: x � Rp, t > 0: u � 1 �25�

I:C:: 0 < x < Rp, t � 0: u � 0 �26�
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and in given by

u�x, t� � 1� 2Rp

px

X1
j�1

� ÿ 1� j
j

sin

�
jpx
Rp

�

� exp

"
ÿ
�
jp
Rp

�2

apt

# �27�

Taking the ®rst derivative of yp (expressed by Eq. (22))
in x and substituting the auxiliary condition, we can
determine f�t�:

@f�t�
@ t
� @u�x, t�

@x

����
x�Rp

�f�0�@u�x, t�
@x

� G�t�, �28�

where (�) is the convolution operation and G(t ) is

given by:

G�t� � ÿhp

kp

"
f�t� � Tpi ÿ �Tf�t�

Tpi

#

ÿ hr

kp

�
f�t� � Tpi ÿ Tw

Tps

� �29�

Substituting Eq. (27) into Eq. (28), we have:

@f�t�
@ t
� 2

Rp

K 11 �t� � f�0� 2
Rp

K 11 �t� � G�t�, �30�

where

K 11 �t� �
X1
j�1

exp

"
ÿ j2p2apt

R2
p

#
�31�

Developing Eq. (30), results:

2

Rp

�1
0

f 0�t�K 11 �tÿ t� dt� 2

Rp

f�0�K 11 �t�

� ÿhp � hr

kp

f�t� � hp

kp

 
Tf �t� ÿ Tpi

Tpi

!

� hr

kp

�
Tw ÿ Tpi

Tpi

�
�32�

Multiplying the above equation by kp=�hp � hr� and

de®ning,

d � 2kp

Rp

ÿ
hp � hr

� �33�

o � hp

hp � hr

�34�

Z � hp

hp � hr

Tw ÿ Tpi

Tpi

�35�

and,

f�t� � o
Tf �t� ÿ Tpi

Tpi

� Z �36�

Then we may write Eq. (32) as,

d
�t
0

f 0�t�K 11 �tÿ t� dt� df�0�K 11 �t� � ÿf�t� � f�t�
�37�

Applying the Laplace transform to this equation, after

some manipulation, we obtain:

f�s� � f�s�
1� dsK 11 �s�

�38�

where,

K 11 �s� �
X1
j�1

1

s� p2apj2=R2
p

�39�

or, in terms of hyperbolic functions [11],

K 11 �s� �
R2

p

ap

�
coth�y�
2y

ÿ 1

2y2

�
�40�

and,

y � Rp

������
s

ap

r
�41�

f �s� is obtained from Eq. (36) and f�s� from Eq. (18):

f�s� � o
�Tf�s�
Tpi

ÿ 1

s
�oÿ Z� �42�

f�s� � Tps�s�
Tpi

ÿ 1

s
�43�

Substituting Eqs. (39), (42) and (43) into Eq. (38) and

isolating Tps�s�, we ®nally have,

Tps�s� � 2o �Tf�s�
2� d

ÿ
y coth�y� ÿ 1

�
� Tpi

s

"
1ÿ 2�oÿ Z�

2� d
ÿ
y coth�y� ÿ 1

� # �44�

The equation for the ¯uid temperature in the Laplace
domain is directly obtained from Eq. (17) and the in-
itial condition:
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w
ÿ
sTf�r, s� ÿ Tfi

�
� g

ÿ
Tps�s� ÿ �Tf�s�

�� a
r

dTf�r, s�
dr

� a
d2Tf�r, s�

dr2

Rearranging the above equation, follows:

d2Tf�r, s�
dr2

� 1

r

dTf�r, s�
dr

ÿ ws
a
Tf�r, s�

� g
a

ÿ
�Tf�s� ÿ Tps�s�

�ÿ wTfi

a
�45�

The solution of this inhomogeneous equation is given
by:

Tf �r, s� � Tfh � Tfp,

where Tfh is the solution of the associated homo-
geneous, and Tfp is a particular solution.

4.1. Solution of the homogenous equation

r2
d2Tfh

dr2
� r

dTfh

dr
ÿ sw

a
r2Tfh � 0 �46�

The above equation is a modi®ed Bessel equation of
zero order, with a parameter sw=a, of the solution

Tfh � A I0�lr� � B K0�lr�: �47�
A and B are constants to be determined and I0�lr� and
K0�lr� are Bessel modi®ed functions of the ®rst and
second kind and zero order, respectively, and l is
given by:

l �
�����������
sw=a2

p
�48�

4.2. Particular solution

From Eq. (45) we determine the following particular
solution:

Tfp � ÿb�s� �49�

where we ®nd

b�s� � g
ws

ÿ
�Tf �s� ÿ Tps�s�

�ÿ Tfi

s
�50�

4.3. General solution

Adding Eqs. (47) and (49) results the general sol-
ution of Eq. (45):

Tf �r, s� � A I0�lr� � B K0�lr� ÿ b�s� �51�

Also, according to the boundary condition at r � 0

(Eq. (6)), Tf is limited, then B � 0 �K0�lr� is
unbounded at r � 0 [12]). Substituting B and the

Laplace transform of Eq. (5) into Eq. (51), follows:

Tf�R, s� � Tw

s
� A I0�lR� ÿ b�s�

Therefore,

A � Tw=s� b�s�
I0�lr� ,

With the above constants, the solution for Tf �r, s� is:

Tf�r, s� � Tw
I0�lr�
s I0�lR� � b�s�

�
I0�lr�
I0�lR� ÿ 1

�
�52�

The Laplace transform for �Tf�t� is obtained from Eq.
(4):

�Tf�s� � 2

R2

�R
0

Tf �r, s�r dr �53�

Carrying Eq. (52) to the above integral, we get:

�Tf�s� � 2

R2 I0�lR�
�
Tw

s
� b�s�

� �R
0

I0�lr�r drÿ b�s�

From the integrals of Bessel functions [13], we have:�R
0

lr I0�lr� d�lr� � lRI1�lR�:

Then,

�Tf�s� � 2I1�lR�
lRI0�lR�

�
Tw

s
� b�s�

�
ÿ b�s�, �54�

from the recurrence relations of Bessel functions [12]

we have:

lRI2�lR� � lR I0�lR� ÿ 2I1�lR� �55�

Rearranging Eq. (54) and substituting Eq. (55),

�Tf�s� � 2Tw

lRs
I1�lR�
I0�lR� ÿ b�s�I2�lR�

I0�lR� �56�

By substituting Eq. (44) into Eq. (50), we eliminate Tps

in the expression of b�s�:

b�s� � ÿg
�
p�s� �Tf�s� � h�s�Tpi

s

�
ÿ Tfi

s
, �57�

where we obtain

p�s� � 1

ws

(
2o

2� d
�
y coth�y� ÿ 1

� ÿ 1

)
�58�
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h�s� � 1

ws

(
1ÿ 2�oÿ Z�

2� d
�
y coth�y� ÿ 1

� ) �59�

Finally, carrying Eq. (57) to Eq. (58), results:

�Tf �s� �
2TwI1�lR� �

ÿ
gh�s�Tpi � Tfi

�
lRI2�lR�ÿ

I0�lR� ÿ gp�s�I2�lR�
�
slR

slR

�60�
Now, expressing Eqs. (44) and (52) in terms of p(s )
and h(s ), we conclude the solution of the system in
Laplace domain:

Tps�s� �
ÿ
wsp�s� � 1

�
�Tf�s� � wTpih�s� �61�

Tf �r, s� � Tw

s

I0�lr�
I0�lR� ÿ

�
gp�s� �Tf�s�

� Tfi

s
� g

h�s�
s

Tpi

��
I0�lr�
I0�lR� ÿ 1

� �62�

5. Inversion of the Laplace transforms

The inverse Laplace transforms of Eqs. (52), (60)
and (61) is obtained by the Cauchy Residue theorem.

Following this method, the inverse Laplace transform
of the function f(s ) is given by [14]: Lÿ1� f �s�� �P
Residues of f �s�est: The summation is evaluated

over the poles of f �s�est: The residue of the
pole b of g(s ) can be obtained by:

Res�b� � 1
�mÿ1�! lim

s4 b

dmÿ1
dsmÿ1 ��sÿ b�mg�s��, where m is the

order of the pole.
Due to the lengthy development in the evaluation of

the residues, we refer ourselves to another work [6] in

the details; here we present the resulting residues at
each pole.

5.1. Inversion of Tf�r, s�

To make it easier, we separate Tf�r, s�est in two
parts:

A1�r, s� � Tw

s

I0�lr�
I0�lR�e

st �63�

and

A2�r, s� � b�s�
�
I0�lr�
I0�lR� ÿ 1

�
est, �64�

Now, the character and residue of poles will be deter-
mined.

5.1.1. Character of poles of A1�r, s�
Eqs. (63) and (48) reveals that A1�r, s� have ®rst-

order poles at s � 0 and s � ÿar2n=w, where 2rn,
n � 1, 2, . . . are the roots of

J0�rR� � 0 �65�
The residues are [6]:

Res�0� � Tw �66�

Res
ÿÿ ar2n=w

� � ÿ2Tw

R

X1
n�1

exp
ÿÿ ar2n=w

�
rn

J0�rnr�
J1�rnR�

�67�

5.1.2. Character of poles of A2�r, s�
From Appendix A, A2�r, s� have ®rst-order poles at

s � ÿapn2n, s � ÿat2n=w, s � ÿar2n=w and a second-order
pole at s � 0 where 2rn, n � 1, 2, . . . are the roots of

Eq. (65), 2nn, n � 1, 2, . . . are the roots of:

2� d
�
nRp cot

ÿ
nRp

�ÿ 1
� � 0 �68�

and 2tn, n � 1, 2, . . . are the roots of:

J0�tR� � gp
ÿ
ÿ at2=w

�
J2�tR� � 0 �69�

The residues are [6]:

Res
�
ÿ apn2n

�
� 0 �70�

Res
ÿÿ ar2n=w

� � 4Tw

R2

X1
n�1

exp
ÿÿ ar2nt=w

�
r2n

J0�rnr�
J2�rnR�

�71�

Res�0� � 0 �72�

Res�an � � 4g
X1
n�1

eant
�
J0�tnr�
J0�tnR� ÿ 1

�

�
�
Tw ÿ Tfi ÿ g

�
h�an �Tpi � p�an �Tw

�	
p�an �

�tnR�2
�
1ÿ gp�an �

�2�4g�p�an � ÿ anp 0�an �
�
�73�

where:

p�an � � 1

wan

(
2o

2� d
�
Djanj1=2cot

ÿ
Djanj1=2

�
ÿ 1

� ÿ 1

)
�74�

h�an � � 1

wan

(
1ÿ 2�oÿ Z�

2� d
�
Djanj1=2cot

ÿ
Djanj1=2

�
ÿ 1

� )
�75�
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p 0�an � � ÿp�an �
an

ÿ odD
wanjanj1=2

�
(
Djanj1=2

�
1� cot2

ÿ
Djanj1=2

��
ÿ cot

ÿ
Djanj1=2

��
2� d

�
Djanj1=2 cot

ÿ
Djanj1=2

�
ÿ 1

�	2
)

�76�

an � ÿat2n=w �77�

and,

D � Rp

a1=2p

�78�

The inverse of Tf�r, s� is obtained by combining Eqs.
(65)±(67) and (70)±(73); the resulting expression is:

Tf �r, t� � Tw � 4g
X1
n�1

eant
�
J0�tnr�
J0�tnR� ÿ 1

�

�
�
Tw ÿ Tfi ÿ g

�
h�an �Tpi � p�an �Tw

�	
p�an �

�tnR�2
�
1ÿ gp�an �

�2�4g�p�an � ÿ anp 0�an �
�
�79�

The functions p�an�, p 0�an� and h�an� are de®ned by
Eqs. (74)±(76); an is given by Eq. (77).

5.2. Inversion of Tps�s�

From Appendix A, Tps�s� have ®rst-order poles at
s � ÿapn2n, s � ÿat2n=w and s � 0; where 2nn and 2tn,
n � 1, 2, . . . are the roots of Eqs. (68) and (69), re-
spectively. The residues are [6]:

Res
�
ÿ apn2n

�
� 0 �80�

Res�0� � Tw �81�

Res
ÿÿ at2n=w

�
� ÿ4o

X1
n�1

eantr�an �

� Tw ÿ Tfi ÿ g
�
h�an �Tpi � p�an �Tw

�
�tnR �2

�
1ÿ gp�an �

�2�4g�p�an � ÿ anp 0�an �
� �82�

r�an � � 2

2� d
�
Djanj1=2 cot

ÿ
Djanj1=2

�
ÿ 1

� �83�

Finally, summing Eqs. (80)±(82), results in the inverse
of Tps�s�:

Tps�t� � Tw ÿ 4o
X1
n�1

eantr�an �

� Tw ÿ Tfi ÿ g
�
h�an �Tpi � p�an �Tw

�
�tnR�2

�
1ÿ gp�an �

�2�4g�p�an � ÿ anp 0�an �
�
�84�

The functions p�an�, h�an�, p 0�an� and r�an� are de®ned
by Eqs. (74)±(76), and (83), respectively.

Now, de®ning the following function,

F�an � �
Tw ÿ Tfi ÿ g

�
h�an �Tpi � p�an �Tw

�
�tnR�2

�
1ÿ gp�an �

�2�4g�p�an � ÿ anp 0�an �
� �85�

we can put the equations for the ¯uid and particle sur-
face temperature in the form:

Tf�r, t� � Tw � 4g
X1
n�1

eant
�
J0�tnr�
J0�tnR� ÿ 1

�
p�an �F�an � �86�

Tps�t� � Tw ÿ 4o
X1
n�1

eantr�an �F�an �, �87�

From the following equation:

f�t� � Tps�t� ÿ Tpi

Tpi

;

we obtain yp�x, t� by Eq. (22),

fp�x, t� �
�t
0

8<:1� 2Rp

px

X1
j�1

� ÿ 1� j
j

sin

�
jpx
Rp

�

� exp

"
ÿ
�
jp
Rp

�2

ap�tÿ t�
#9=;

� @f�t�
@t

dt� f�0�
8<:1� 2Rp

px

X1
j�1

� ÿ 1� j
j

� sin

�
jpx
Rp

�
exp

"
ÿ
�
jp
Rp

�2

apt

#9=; �88�

Introducing f�t� into the equation above and develop-
ing it results:
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yp�x, t� � f�t� � 2Rp

px

X1
j�1

� ÿ 1� j
j

sin

�
jpx
Rp

�8<:f�0�
� exp

"
ÿ
�
jp
Rp

�2

apt

#
ÿ 4o

Tpi

X1
n�1

(
exp�ant�

ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)
anr�an �F�an �

an � ap

ÿ
jp=Rp

�2
9=;
�89�

Substituting the expression of yp�x, t� (Eq. (15)), we
®nd

Tp�x, t� � f�t�Tpi � 2Rp

px

X1
j�1

� ÿ 1� j
j

sin

�
jpx
Rp

�

�
8<:f�0�Tpi exp

"
ÿ
�
jp
Rp

�2

apt

#
ÿ 4o

�
X1
n�1

(
exp�ant� ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)

� anr�an �F�an �
an � ap

ÿ
jp=Rp

�2
9=;� Tpi �90�

The temperature at the center of the particle is
obtained from the above equation by a limit process:

Tp�0, t� � f�t�Tpi � 2
X1
j�1
� ÿ 1� j

�
8<:f�0�Tpi exp

"
ÿ
�
jp
Rp

�2

apt

#

ÿ 4o
X1
n�1

(
exp�ant� ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)

� anr�an �F�an �
an � ap

ÿ
jp=Rp

�2
9=;� Tpi �91�

The mean temperature of the particle is given by:

�Tp�t� � 4p
Vp

�Rp

0

Tp�x, t�x2 dx �92�

Now, substituting Eq. (90) in this equation and inte-
grating, results:

�Tp�t� � f�t�Tpi ÿ 6

p2
X1
j�1

1

j2

�
8<:f�0�Tpi exp

"
ÿ
�
jp
Rp

�2

apt

#

ÿ 4o
X1
n�1

(
exp�ant� ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)

� anr�an �F�an �
an � ap

ÿ
jp=Rp

�2
9=;� Tpi �93�

Carrying Eq. (79) to Eq. (4), we obtain the mean tem-
perature of the ¯uid at time t:

�Tf�t� � Tw � 4g
X1
n�1

eantF�an �p�an � 2
R2

�R
0

�
J0�tnr�
J0�tnR� ÿ 1

�
r dr

�94�

From the integrals of the Bessel functions [13],�R
0

J0�tnr�r dr � R

tn
J1�tnR� �95�

therefore,

2

R2

�R
0

�
J0�tnr�
J0�tnR� ÿ 1

�
r dr � 2J1�tnR�

tnRJ0�tnR� ÿ 1 �96�

From [12] we have the following relation:

2J1�tnR� � tnR
�
J2�tnR� � J0�tnR�

� �97�

Combining Eqs. (69), (96) and (97) results in the value
of the integral:

2

R2

�R
0

�
J0�tnr�
J0�tnR� ÿ 1

�
r dr � ÿ 1

gp�an �
Finally, carrying this result to Eq. (94), we have:

�Tf�t� � Tw ÿ 4
X1
n�1

eantF�an � �98�

where an is given by Eq. (77).

6. Results and discussion

One of the major drawbacks in employing the Cau-
chy residue theorem in the inversion of Laplace trans-
forms arises when the character of the poles is not

easily determined. In fact, other works [7] have found
some di�culties in the inversion of transformed
equations. In such a case, the Laguerre theorem [8]
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was employed to establish the character of some poles.
However, this theorem says nothing about the zero

multiplicity that is necessary to evaluate the order of
poles. Strictly speaking, the character of zeros of the
expression, I0�lR� ÿ gp�s�I2�lR� that appears in the de-

nominator of �Tf�s�, Eq. (60), cannot be established by
the Laguerre theorem. In the present analysis, we
made a development (see Appendix A) that possibly

overcomes these di�culties, extending the use of the
Laplace transforms and Cauchy Residue theorem to
this class of problems.

Now, by Eq. (69),

gp�an � � ÿJ0�tnR�
J2�tnR� ,

substituting this result in Eq. (86),

Tf �r, t� � Tw ÿ 4
X1
n�1

�
J0�tnr�
J0�tnR� ÿ 1

�
J0�tnR�
J2�tnR�F�an �e

ant

�99�

in case of a pure ¯uid, g40; then by Eq. (69),

J0�tnR� � 0

or tn4rn n � 1, 2, 3 . . .

by Eq. (85),

lim
g4 0

F�an � � �Tw ÿ Tfi �
�rnR�2

,

also, when g40, up4uf and consequently w41: Sub-
stituting the above results in Eq. (99), follows

lim
g4 0

Tf�r, t� � Tw � 4�Tfi ÿ Tw �

�
X1
n�1

"
J0�rnr�

�rnR�2J2�rnR�
eÿar

2
nt

# �100�

then by Eqs. (97) and (65),

2J1�rnR� � rnRJ2�rnR�

Carrying this result to Eq. (100) we ®nally obtain:

Tf �r, t� � Tw � 2�Tfi ÿ Tw �
X1
n�1

�
J0�rnr�

rnRJ1�rnR�
eÿar

2
nt

�
�101�

which is the classical Graetz solution [15] for the heat-
ing of a ¯uid in a duct of uniform velocity over the

cross section.
Although a great part of this study deals with the

development of analytical solution of the proposed

model, we will in the following paragraphs discuss
some features relative to it.

The assumption, that the temperature distribution of
the particles is uniform over the tube cross section, is
equivalent to considering that the solid eddy di�usivity

of heat, eH, P, is extremely large (at convection domi-
nant conditions). Due to the fact that we have
neglected the eddy thermal di�usivity of the ¯uid, eH, f ,

this means that there is no correlation between eH, P

and eH, f : The assumption of radial independence in
the heat exchanged between the ¯uid and particles may

cause some distortion in the ¯uid temperature pro®le,
which is minimized in systems with high thermal di�u-
sivity of the ¯uid or high simultaneous particle±wall
radiative and ¯uid±particle convective heat transfer (in

the case of ¯uid transparent to radiation), since in this
case, the ¯uid temperature pro®le tends to be more
uniform over the tube cross section.

The calculated values of the heat ¯uxes and the
¯uid, and the particle temperatures will be presented in
the following. The predictions of the model are com-

pared with a series of thermal tests realized by LisboÃ a
[5] in an experimental unit with a mixture of oil shale
®nes particles and air, and also with an existent

lumped capacity model [6] described in Appendix B for
completeness. The experimental apparatus used is
described in LisboÃ a's work in detail [5]. In brief, the
apparatus is a vertical pressure type transport system.

The test section consists of a 20.9 mm I.D.,1 m long
iron tube and its wall temperature was maintained by
electric resistance. Gas (air) temperatures in the tube

were measured at the inlet and outlet of the heating
section by thermocouples. The particle temperature at
the outlet of the heating section was determined in-

directly by means of a thermal balance. The conditions
and results of this tests are reproduced in Tables 1 and
2. In Table 1, the ¯uid and particle velocities and the
bed porosity are theoretical values obtained by the sol-

ution of a hydrodynamical model. In Table 2, the
¯uid±particle heat transfer coe�cient is obtained from
Kato's correlation [16]:

Nup � 2:38� 10ÿ3
ÿ
Rep

�n� e
1ÿ e

�0:97
�102�

with

n � 2:48

�
e

1ÿ e

�ÿ0:28
�103�

In accordance with the work of LisboÃ a [5], this corre-
lation gives the best agreement with the tests con-
ditions. The wall±mixture heat transfer coe�cient

required by the lumped capacity solution (see Appen-
dix B) is given by the following equation, obtained in
the experimental unit [5]:
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hw � kf

D
0:015Re0:8 Pr0:4 �104�

Both correlations are adopted in the present analysis.
The physical oil shale ®nes properties and the particle
mean diameter are also obtained from LisboÃ a [5]:

. thermal conductivity, kp � 1:4 W/m 8C;

. density, rp � 2:30 g/cm3;

. speci®c heat, Cp � 961:4 J/kg 8C;

. emissivity, ep � 0:86;

. particle mean diameter, dp � 348:8 mm (Sauter mass
basis).

In the simulations with the model, the gas properties
(air) were calculated iteratively at the mean tempera-
ture in the pipe. Table 3 presents a comparison

between the results of distributed parameter solution
(DP) and a previous lumped capacity solution (LP) [6]
with the experimental data obtained by LisboÃ a [5] with

a mixture of oil shale ®nes particles and air. We ob-
serve that the predictions of both models compare well
with the experimental data. Also, Table 4 presents the
calculated temperatures at the particle surface (Eq.

(84)) and at the center of the particle (Eq. (91)) for
L � 1 m at the tests conditions. Although the tempera-
ture di�erences are low, the results have shown that

intraparticle temperature gradients of 6900 K/m (test
5) were found.
The ®gures that follow relate a dependent variable

(e.g. Nusselt number) with an independent variable
(e.g. L/DT) for the hydrodynamical conditions listed in
Table 5.

Fig. 1 presents the in¯uence of wall temperature in
the mean temperature of the ¯uid for the cases of a
solid/gas mass ratio �Ws=Wf� of 2.7 and 7.8 as pre-
dicted by the present solution (DP) and the lumped

parameter solution (LP) [6] (see Appendix B). Fig. 2
shows results for the mean temperature of particles
under the same conditions. It demonstrates a good

agreement between the solutions of both models. As
expected, �Tf and �Tp increase with increasing Tw: With
Ws=Wf increasing, �Tf and �Tp diminish as a conse-

quence of the greater heat capacity of the mixture.
De®ning the total, radiant and convective heat

¯uxes at the wall respectively:

�qT �w� �qR �w��qC �w �105�

�qR �w� hr
nvAp

Aw

ÿ
Tw ÿ Tps�t�

� �106�

�qC �w� ÿkf
@Tf

@ r

����
r�R

�107�

with hr given by Eq. (13), then from Eqs. (86), (69)
and the derivatives of Bessel functions [12], we

have:

�qC �w� ÿ2Rkf

X1
n�1

eantt2n
�
gp�an � ÿ 1

	
F�an � �108�

Fig. 3 presents the in¯uence of wall temperature

Table 1

Conditions of the tests realized by LisboÃ a [5]

Test No. Ws (kg/h)
Ws

Wf
uf (m/s) up (m/s) e

01 22.6 2.9 5.164 2.650 0.9970

02 50.0 6.4 5.182 2.684 0.9935

03 24.7 3.2 5.165 2.652 0.9968

04 52.2 6.7 5.183 2.686 0.9932

05 21.0 2.7 5.162 2.649 0.9972

06 44.0 5.6 5.178 2.677 0.9943

Table 2

Conditions and results of the tests realized by LisboÃ a [5] (the heating section is a 0.75 in Sch 40 tube, L � 1 m)

Test No. Tw (8C) Tfi (8C) Tpi (8C) hw (W/m2 8C) hp (W/m2 8C) Tf �L� (8C) Tp�L� (8C)

01 200.0 32.0 32.0 19.20 367.7 68.5 64.2

02 200.0 28.0 28.0 19.36 274.2 60.1 49.8

03 300.0 32.7 32.7 19.04 361.2 92.8 78.3

04 300.0 32.8 32.8 19.17 271.6 86.0 65.1

05 400.0 28.0 28.0 18.87 387.2 125.5 97.5

06 400.0 31.0 31.0 18.99 289.0 106.0 80.3
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Table 3

Comparison between lumped parameter (LP) [6] and distributed parameter (DP) solutions and experimental data [5]

Test No. Distributed parameter (DP) Lumped parameter (LP) [6]

�Tf �L� (8C) DTr,f
a �Tp�L� (8C) DTr,p

b �Tf �L� (8C) DTr,f �Tp�L� (8C) DTr,p

1 69.36 1.024 55.51 0.730 73.01 1.124 54.01 0.683

2 55.02 0.842 44.32 0.748 58.50 0.950 43.51 0.711

3 92.53 0.996 72.74 0.878 97.94 1.085 70.36 0.826

4 77.24 0.835 62.07 0.906 82.30 0.930 60.76 0.866

5 122.46 0.969 95.57 0.972 130.21 1.048 92.14 0.923

6 103.43 0.966 82.29 1.040 110.67 1.062 80.36 1.001

a DTr,f��Tf , calc:ÿTfi�=�Tf , exp:ÿ Tfi�:.
b DTr,p��Tp, calc:ÿTpi�=�Tp, exp:ÿTpi�:.

Table 4

Calculated temperatures at the particle surface and at the center of the particle for conditions of thermal tests at L � 1 m

Test No. 1 2 3 4 5 6

Tps�L� (8C) 55.68 44.44 73.03 62.29 96.05 82.67

Tp�0, L� (8C) 55.24 44.14 72.30 61.75 94.84 81.72

Fig. 1. Comparison between DP and LP [6] solutions for the

mean temperature of ¯uid.

Fig. 2. Comparison between DP and LP [6] solutions for the

mean particle temperature.
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and solid/gas mass ratio in the relative radiant heat
¯ux at the wall �qR�w=�qT�w: We observe that both

factors promote the relative radiant heat ¯ux (note
that in the present model, �qR�w0WsT

4=up and
�qC�w0T).

For the particle surface, the total, radiant and con-
vective heat ¯uxes are given by:

�qT �ps
� �qR �ps

��qC �ps
�109�

�qR �ps
� hr

ÿ
Tw ÿ Tps�t�

� �110�

�qC �ps
� hp

ÿ
�Tf �t� ÿ Tps�t�

� �111�

Fig. 4 shows the in¯uence of Tw and Ws=Wf in the
radiant relative heat ¯ux at the particle surface

�qR�ps=�qT�ps: It is interesting to note that for

Tw � 3008C �Ws=Wf � 2:7� the radiant heat ¯ux rep-
resents 30±48% of the total heat ¯ux at the particle

surface, in contrast with the fact that normally at this
wall temperature, radiant e�ects are disregarded.
However, the following factors that were not

included in the model equations, can substantially
diminish the radiant ¯ux for the mixture:

. Heat loss at the tube inlet and outlet; Eq. (13)

assumes a dilute particulate bed. At the tube inlet
and outlet, the con®guration factor from the particle
to the wall will be lower than 1. Therefore, in the
tubes where the ratio Dr/L is high, this solution will

predict values of temperatures higher than the real
ones (for the experimental unit of Table 1,
Dr=L � 0:02093).

. Interruption of the radiant ¯ux to a determined par-

Table 5

Hydrodynamical conditions employed in the analysis of the thermal model

Qf (l/h) Ws (kg/h)
Ws

Wf
uf (m/s) up (m/s) e

6.420 21.0 2.7 5.162 2.649 0.9972

6.420 44.0 5.6 5.178 2.677 0.9943

6.420 64.7 7.8 5.192 2.699 0.9916

Fig. 3. In¯uence of the wall temperature and the loading ratio

on the relative radiant heat ¯ux at the wall.

Fig. 4. In¯uence of the wall temperature and the loading ratio

on the relative radiant heat ¯ux at the particle surface.
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ticle due to the presence of other particles (blinding);
. Radiation scattering.

The blinding e�ect also decreases the con®guration fac-
tor from the particle to the wall, resulting in lower
radiant coe�cients, hr: The scattering e�ect will be dis-

cussed later.The increase in the relative radiant ¯ux at
the particle surface for increasing loading ratios is
explained by the decrease in the bed porosity which

results in smaller values of hp [16] (see Tables 1 and 2),
and consequently in smaller �qC�ps:
The minimum relative radiant ¯ux that appears in

Fig. 4 corresponds approximately to the point of the
greatest convective heat transfer between the ¯uid and
particle. First, due to the greater heat capacity of the

solids in comparison with the heat capacity of the
¯uid, the ratio �qR�ps=�qT�ps decreases with L until a
minimum (i.e., hp� �Tf�t� ÿ Tps�t�� increases faster than
hr�Tw ÿ Tps�t��). After the minimum, the increase in

Tps�t� and consequently in hr (see Eq. (13)) counter-
balances the increase in �Tf �t�, resulting in an increase
of the ratio �qR�ps=�qT�ps: The local Nusselt number at

the reactor length L is de®ned as:

NuT
L �

2hLR

kf

� 2R�qT �w
kf�Tw ÿ Tmm � �112�

or,

NuT
L � NuC

L �NuR
L �113�

where,

NuC
L �

2R�qC �w
kf �Tw ÿ Tmm � �114�

Fig. 6. Comparison between the results of LP [6] and DP sol-

utions at (a) Re � 7200 and (b) Re � 15,800:
Fig. 5. In¯uence of the wall temperature and the loading ratio

on the local Nusselt number.
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NuR
L �

2R�qR �w
kf�Tw ÿ Tmm � �115�

Tmm is the mixed mean temperature as de®ned by
Boothroyd and Haque [17]:

Tmm � WfCf
�Tf �WsCp

�Tp

WfCf �WsCp

�116�

Fig. 5 shows the in¯uence of Ws=Wf and Tw on the
local Nusselt number. In the same manner that
�qR�w=�qT�w (Fig. 3), the increase in these factors causes

an increase in the Nusselt number. The minimum that
appears in the curves of these ®gure was also observed
by Tamehiro et al. [18] and Azad and Modest [4]. The

minimum Nusselt number being a more conservative
value is interesting to design.
The main di�erences between the heat ¯uxes pre-

dicted by the present solution and the lumped capacity
solution [6] are observed at small values of the heating
section, L. These di�erences are due to the fact that in
the distributed parameter model (present work) the

wall to mixture coe�cient, hw, is a local coe�cient. At
greater values of the heating section, the two solutions
present similar results since hw tends to the mean coef-

®cient, �hw [6].
Fig. 6(a) and (b) depict a comparison between the

lumped capacity solution [6] and the present one for

the mean temperatures of the ¯uid and particles, re-
spectively, as a function of the wall temperature and at
di�erent Reynolds numbers �Re � DrGf=mf at the heat-
ing section entrance). As the Reynolds number varies

from 7200 to 15,800, it is possible to verify that the
values of �Tf predicted by the LP solution [6], are
greater than the DP solution; this result was expected

since in the DP model the turbulent thermal di�usivity
of the ¯uid was assumed negligible.
In the present analysis, the scattering of radiation by

the particles was not considered, however it will be
demonstrated that it occurs. According to the descrip-
tion in the Handbook of Heat Transfer Fundamentals

[19], for large particles the scattering criterion is:

pdp

l
� 1

where l is the radiation wavelength which may be cal-
culated by Wien's law:

l � 2884 mm K

T �K�
In LisboÃ a's [5] experiment dp13:5� 10ÿ4 m and
Tw1700 K, therefore, l14 mm and pdp=l 1 275 >> 1
4 geometrical scattering. Also, according to Brewster

and Tien [20], the scattering is type independent. The
importance of this scattering depends on the phase
function and the scattering albedo. But, as described in

[19], large particles are forward scattering in general;
in this case the scattered energy behaves similar to

transmitting radiation, reducing the in¯uence of scat-
tering [4] (it is important to note that despite the
restrictions that the particles have spherical shape, oil

shale particles are ¯ake-like). As a ®nal consideration,
we note that the last simplifying assumption has been
shown to be a good approximation except for regions

close to a temperature jump [21].

7. Conclusions

The analytical methods employed in this work made

it possible to obtain an analytical solution to the pro-
blem of radiant and convective heat transfer to a pneu-
matically conveyed mixture of particles, including

radial dependence on ¯uid temperature. The main di�-
culties related to the determination of the character of
the poles were overcome by the method described in
Appendix A. For in®nity dilution �g40� the solution

obtained results in the classical Graetz [15] solution for
the case of the ¯uid ¯owing alone. The comparison
with experimental data available in the literature

demonstrated that the present solution describes well
the ¯uid and particle temperatures in the heating of a
pneumatically conveyed mixture of oil shale ®nes par-

ticles and air. It must be pointed out, however, that
the experimental data is available only for low wall
temperatures (up to 4008C) and the oil shale process

pyrolisis is normally conducted at Tw17008C. It
should also be desirable to compare the results over a
broader range of hydrodynamic conditions. At moder-
ate Reynolds numbers, the results of the present model

agree well with an existent lumped capacity solution
[6]. The main advantage in this case is the fact that it
is not necessary to employ a correlation for the wall±

mixture heat transfer coe�cient, since it can be deter-
mined from the temperature pro®le. The solution
obtained obviously can be applied to other processes

involving heat transfer to a gas±solid mixture, pneu-
matically conveyed, provided the assumptions that
were made, apply. Particularly, one must avoid systems
with low bed porosity and high wall temperatures

where strong blinding e�ects can occur. For systems
with a large particle Biot number no other analytical
solution, which includes radiation, are available, so far

as we know (except the approximate solution of Lis-
boÃ a [5]); so, the present model can be employed.
Finally, it must be remembered that the accuracy of

the thermal model will depend on adequate corre-
lations for the heat transfer coe�cient hp and a good
hydrodynamic model.
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Appendix A. Character of poles of A2(r, s ), Eq. (64)

Substituting Eqs. (58) and (59) into Eqs. (57) and

(60) it follows that,

�Tf �s� �
(
2TwI1�lR�

�
"
g
ws

"
1ÿ 2�oÿ Z�

2� d
�
y coth�y� ÿ 1

� #Tpi � Tfi

#

� lRI2�lR�
)
�
("

I0 �lR� ÿ g
ws

�
"

2o
2� d

�
y coth�y� ÿ 1

� ÿ 1

#
I2 �lR�

#
s lR

)ÿ1
�A1�

b�s� � ÿ g
ws

"
2o

2� d
�
y coth�y� ÿ 1

� ÿ 1

#
�Tf �s�

ÿ g
ws2

"
1ÿ 2�oÿ Z�

2� d
�
y coth�y� ÿ 1

� #Tpi ÿ Tfi

s
�A2�

From Eqs. (64), (A1), (A2) and by the de®nition of
p(s ), Eq. (58), A2�r, s� is analytic except at s � 0,
s � ÿar2n=w, n � 1, 2, . . . �2rn are the roots of Eq. (65)

c s � ÿar2n=w is a ®rst-order pole) and at the roots of:

2� d
ÿ
y coth�y� ÿ 1

� � 0 �A3�

and

I0�lR� ÿ gp�s�I2�lR� � 0 �A4�
where l is de®ned by Eq. (48). From the equations

listed above, s � 0 will be a second-order pole except if
it is a root of multiplicity greater than 1 in Eq. (A4).
This will be veri®ed in the following:

1. Roots of Eq. (A3): Employing Eqs. (39) and (40) we
rewrite Eq. (A3) in the form:

1� ds
X1
j�1

1

s� zj2
� 0 �A5�

where

z � p2ap=R
2
p,

also, by Eq. (33), d is a real positive constant

First case: s 2 R� c Eq. (A5), will have no
roots, since

1� ds
X1
j�1

1

s� zj2
r1, 8sr0

Second case: s 2 R�ÿ; let s � ÿa, a > 0; then Eq.
(A5) becomes:

1ÿ da
X1
j�1

1

zj2 ÿ a
� 0

This equation has one root in the interval

zj2 < a < z� j� 1�2 j � 0, 1, 2, 3 . . .

once the equation varies from 1 to ÿ1 in the

®rst interval and from �1 to ÿ1 in the others.
Third case: s 2 I�; let s � bi, b > 0; then from
Eq. (A5),

1� dbi
X1
j�1

1

bi� zj2
� 0

taking the product by the complex conjugate in
the series, results

1� db
X1
j�1

b� zj2i

b2 � ÿzj2�2 � 0

The above equation reveals that both imaginary

and real terms are positive, therefore, it has no
roots of type s � bi:
Fourth case: s 2 Iÿ; in this case, a similar analy-

sis as above leads to the same conclusion: There
are no roots like s � ÿbi:
Fifth case: s 2 C, 3 s � aÿ bi; rearranging Eq.

(A5),

X1
j�1

s

s� zj2
� ÿ1

d
�A6�

Now, for s � aÿ bi,

X1
j�1

aÿ bi

aÿ bi� zj2
� ÿ1

d

taking the product by the complex conjugate in
the above equation and developing, it follows
that,
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X1
j�1

a
ÿ
a� zj2

�
� b2 ÿ zj2iÿ

a� zj2
�2�b2 � ÿ1

d

The above equation reveals that it is impossible

to cancel the imaginary (or real) terms, so, for
s 2 C, 3 s � aÿ bic 6 9 roots for Eq. (A5).
Sixth case: s 2 C, 3 s � a� bi
Seventh case: s 2 C, 3 s � ÿaÿ bi

Eighth case: s 2 C, 3 s � ÿa� bi

Treating the three cases above like the ®fth case, we

can prove that there are no roots of these types.
Therefore, Eq. (A3) has only real negative roots like
s � ÿapn2n, n � 1, 2, 3, . . . :Now, to analyse the mul-

tiplicity of these roots, we return to Eq. (A6); if a
root's multiplicity is greater than 1, there may also
be roots of the successive derivatives of this

equation. So, taking the derivative of both sides of
Eq. (A6) relative to s,

X1
j�1

ÿsÿ
s� zj2

�2 �X1
j�1

1

s� zj2
� 0

or,

X1
j�1

zj2ÿ
s� zj2

�2 � 0

the left side of this equation is always greater than

zero for s being a real number, either the multi-
plicity is one.

2. Roots of Eq. (A4): Initially, using Eqs. (39), (40)

and (58), we put Eq. (A4) in the form:

I0�lR� ÿ g
ws

264 o

1� ds
X1
j�1

1

s� zj2

ÿ 1
375I2�lR� � 0 �A7�

s � 0 is a zero of this equation.

Now, from Eq. (A7),

wsI0�lR� � gI2�lR� � goI2�lR� 
1� ds

X1
j�1

1

s� zj2

! �A8�

or 
1� ds

X1
j�1

1

s� zj2

! 
wsI0�lR�
gI2�lR� � 1

!
� o �A9�

First case: s 2 R��c Eq. (A9) will have no roots,

since oR1 and the left-hand side of the equation
is always greater than 1.
Second case: s 2 R�ÿ; let s � ÿat2=w, then, from

Eqs. (A9) and (A4) we have8><>:1ÿ
dat2

w

X1
j�1

1

zj2 ÿ at2

w

9>=>;
(
at2J0�tR�
gJ2�tR� � 1

)
� o

�A10�

when at2=w varies from zj2 to z�j� 1�2; j �
1, 2, 3, . . . , the ®rst brackets in the left-hand side
of the above equation varies from �1 to ÿ1;
also, when passing through the zeros of J2�tR�,
the second brackets in the left-hand side varies
from �1 to ÿ1: Therefore, we may expect in®-
nite zeros for Eq. (A10) at s � ÿat2n=w, n � 1, 2,
3, . . .

Third case: s 2 I�, 3 s � bi; b > 0; then we
may write Eq. (A9) in the form: 
1� d

X1
j�1

bi

bi� zj2

!ÿ
sQ�l� � 1

� � o, �A11�

where Q�l� is de®ned as:

Q�l� � wI0�lR�
gI2�lR� �A12�

Now, multiplying by the complex conjugate in
the series of the ®rst parenthesis in the left-hand

side of Eq. (A11), 
1� d

X1
j�1

bi zj2 � b2

b2 � ÿzj2�2
!ÿ

sQ�l� � 1
� � o, �A13�

the expression above can also be written in the
general form:

�1� c� di�ÿsQ�l� � 1
� � o �A14�

where c and d are positive real numbers, rep-

resenting the results of the series in the ®rst par-
enthesis, left-hand side; therefore,

sQ�l� � o
1� c� di

ÿ 1

� o�1� cÿ di�
�1� c�2�d 2

ÿ 1 �A15�

or

sQ�l� � o�1� c�
�1� c�2�d 2

ÿ 1ÿ di

�1� c�2�d 2

Consequently, if Eq. (A4) has roots of the type
s � bi, the following necessary conditions can be
established from above:
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�)Re
�
sQ�l�	 < 0 Im

�
sQ�l�	 < 0

���Re
�
sQ�l�	��� < 1

���Im�sQ�l�	��� < 1

where RefsQ�l�g and ImfsQ�l�g are the real and
imaginary parts of sQ�l�, respectively.

Also, for the remaining cases, the necessary con-
ditions that can be established are:

Fourth case: s � ÿbi;

�)Re
�
sQ�l�	 < 0 Im

�
sQ�l�	 > 0

���Re
�
sQ�l�	��� < 1

���Im�sQ�l�	��� < 1

Fifth case: s � a� bic Idem to the third case.
Sixth case: s � ÿa� bi �)ImfsQ�l�g < 0

Seventh case: s � aÿ bi c Idem to the fourth
case.
Eighth case: s � ÿaÿ bi �)ImfsQ�l�g > 0

The Bessel functions for complex arguments are com-
plex numbers. These, by contrast with trigonometric
functions, cannot be separated into real and imaginary

parts expressed in terms of known functions [22];
therefore, we have realized an extensive numerical
study for the sQ�l� of the third to the eight case listed

above, and veri®ed that the necessary conditions refer-
ing to the signal of the imaginary parts are not satis-
®ed. So, there are no roots like these for Eq. (A4).
In conclusion, Eq. (A4) has only real negative roots

at s � ÿat2n=w, n � 1, 2, 3 . . . and a root at s � 0:
Now, to analyze the multiplicity of these roots we

®rst put the second parenthesis in the left-hand side of

Eq. (A9) in the denominator of the right-hand side,
and take the derivative of the resulting expression rela-
tive to s; second, after some manipulation, employing

the recurrence relations of Bessel functions [12], it
results in:

d
X1
j�1

zj2ÿ
s� zj2

�2 � ÿo
"
wsI0�lR�
gI2�lR� � 1

#ÿ2

� 2gwI2�lR�I0�lR� ÿ wgI 2
1
�lR��

gI2�lR�
�2

�A16�

Also, substituting Eq. (55) in the above equation and
following with algebraics,

d
X1
j�1

zj2ÿ
s� zj2

�2 � ÿo
"
wsI0�lR�
gI2�lR� � 1

#ÿ2
�
2gwI2�lR�I0�lR�

"
1�

�
lR
2

�2
#
ÿ
�
lR
2

�2

wg
�
I 2
2
�lR� � I 2

0
�lR���

gI2�lR�
�2

Taking lim
s4ÿat2n

�
w
in the above equation, results:

d
X1
j�1

zj2 
zj2 ÿ at2n

w

!2
� ÿo

"
at2nJ0�tnR�
gJ2�tnR� � 1

#ÿ2
�
ÿ2gwJ2�tnR�J0�tnR�

"
1ÿ

�
tnR
2

�2
#
�
�
tnR
2

�2

wg
�
J 2

2�tnR� � J 2
0�tnR�

�
ÿ
gJ2�lR�

�2

The right-hand side of the equation above will be

always negative for tnRr2 c multiplicity = 1 for
tnRr2:
For the interval 0 < tnR < 2, we return to Eq. (A16)

and apply lim
s4ÿat2n

�
w
:

d
X1
j�1

zj2 
zj2 ÿ at2n

w

!2
� ÿo

"
at2nJ0�tnR�
gJ2�tnR� � 1

#ÿ2

� gw
�
J 2

1�tnR� ÿ 2J2�tnR�J0�tnR�
��

gJ2�tnR�
�2

and since J 2
1�tnR� ÿ 2J2�tnR�J0�tnR� > 0, 8 tnR 2 �0, 2�

the right-hand side is always negative; therefore, Eq.
(A16) will have no roots of the type s � ÿat2n=wcmul-

tiplicity of the roots s � ÿat2n=w of Eq. (A4) is one.
The same can be demonstrated for s � 0:

Appendix B. Lumped Capacity Model [6]

The main simplifying hypothesis of this model is
likewise the distributed parameter model (DP), except
that:

. the ¯uid temperature is uniform over the pipe cross
section;

. the eddy thermal di�usivity of the ¯uid is included

in the model by means of a wall heat transfer co-
e�cient, hw:
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B.1. Governing equations

In a similar manner that Eqs. (1)±(3), the particle

and ¯uid energy balance respectively yields:

1

ap

@Tp�x, t�
@ t

� @ 2Tp�x, t�
@x2

� 2

x
@ 2Tp�x, t�

@x
�B1�

ufrfCf

up

dTf �t�
dt

� hwAw

V
�Tw ÿ Tf�t�� ÿ hpnvAp

V

ÿ
Tf �t� ÿ Tps�t�

� �B2�

The system formed by the above equations is subjected
to the following boundary conditions:

x � Rp, t > 0: Tp � Tps�t� �B3�

x � 0, t > 0: Tp � finite, �B4�

and the initial conditions,

t � 0, 0 < x < Rp: Tp � Tpi �B5�

t � 0,: Tf � Tfi, �B6�

and also the additional condition:

x � Rp, t > 0:

ÿkp

@Tp

@x
� hp

ÿ
Tps�t� ÿ Tf

�� hr

ÿ
Tps�t� ÿ Tw

� �B7�

B.2. Solution of the model

The solution of this model (LP) follows analo-
gously to the solution of the distributed parameter
model (DP). Details on the development are given

apart [6]. The resulting expressions are:

Tf �t� � Tw ÿ
X1
n�1

exp
�
ÿ aps2nt

�L�sn �
aps2n

, �B8�

Tps�t� � Tw ÿ 1

g

X1
n�1

exp
�
ÿ aps2nt

�Dÿ waps2n
aps2n

L�sn �

�B9�

Tp�x, t� � f�t�Tpi � 2Rp

px

X1
j�1

� ÿ 1� j
j

� sin

�
jpx
Rp

�8>><>>:f
�0�Tpi exp

"
ÿ
�
jp
Rp

�2

apt

#

� 1

g

X1
n�1

�
Dÿ waps2n

�
L�sn �

�
(

exp
�
ÿ aps2nt

�
ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)

� 1

ap

�
jp
Rp

�2

ÿaps2n

9>>=>>;� Tpi �B10�

where

L�sn � �
(
ÿ waps2nTfi � jTw � gTpi

�
"
1ÿ 2�oÿ Z�

2� d
ÿ
snRp cot

ÿ
snRp

�ÿ 1
� #)=

8<:w
� ogdRpsn

apsn

Rp

�
1� cot2

ÿ
snRp

��ÿ cot
ÿ
snRp

�
�
2� d

ÿ
snRp cot

ÿ
snRp

�ÿ 1
��2

9=;
�B11�

2sn, n � 1, 2, . . ., are the roots of:

Dÿ waps2 ÿ 2og
2� d

ÿ
sRp cot

ÿ
sRp

�ÿ 1
� � 0 �B12�

and f�t� is given by Eq. (18).
The mean temperature of the particle at time t, is

obtained by integration of Eq. (B10) in the particle

volume:

�Tp�t� � f�t�Tpi ÿ 6

p2
X1
j�1

1

j2

8<:f�0�Tpi exp

"
ÿ
�
jp
Rp

�2

apt

#

� 1

g

X1
n�1

�
Dÿ waps2n

�
L�sn � �

(
exp

�
ÿ aps2nt

�

ÿ exp

"
ÿ
�
jp
Rp

�2

apt

#)
1

ap

ÿ
jp=Rp

�2ÿaps2n

9=;� Tpi

�B13�
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